Design, synthesis, and study of a mycobactin-artemisinin conjugate that has selective and potent activity against tuberculosis and malaria.
نویسندگان
چکیده
Although the antimalarial agent artemisinin itself is not active against tuberculosis, conjugation to a mycobacterial-specific siderophore (microbial iron chelator) analogue induces significant and selective antituberculosis activity, including activity against multi- and extensively drug-resistant strains of Mycobacterium tuberculosis. The conjugate also retains potent antimalarial activity. Physicochemical and whole-cell studies indicated that ferric-to-ferrous reduction of the iron complex of the conjugate initiates the expected bactericidal Fenton-type radical chemistry on the artemisinin component. Thus, this "Trojan horse" approach demonstrates that new pathogen-selective therapeutic agents in which the iron component of the delivery vehicle also participates in triggering the antibiotic activity can be generated. The result is that one appropriate conjugate has potent and selective activity against two of the most deadly diseases in the world.
منابع مشابه
A Novel QSAR Model for the Evaluation and Prediction of (E)-N’-Benzylideneisonicotinohydrazide Derivatives as the Potent Anti-mycobacterium Tuberculosis Antibodies Using Genetic Function Approach
Abstract A dataset of (E)-N’-benzylideneisonicotinohydrazide derivatives as a potent anti-mycobacterium tuberculosis has been investigated utilizing Quantitative Structure-Activity Relationship (QSAR) techniques. Genetic Function Algorithm (GFA) and Multiple Linear Regression Analysis (MLRA) were used to select the descriptors and to generate the correlation QSAR models that relate the Mi...
متن کاملCryptolepine and development of new antimalarial agents
Natural product-derived drugs exemplified by quinine, isolated from South American Cinchona species and artemisinin discovered in China are of immense importance for the treatment of malaria. Although malaria parasites resistant to artemisinin have not yet been found in malaria patients, the need for new antimalarial agents remains. The burden of malaria is heaviest in Africa where over a milli...
متن کاملCryptolepine and development of new antimalarial agents
Natural product-derived drugs exemplified by quinine, isolated from South American Cinchona species and artemisinin discovered in China are of immense importance for the treatment of malaria. Although malaria parasites resistant to artemisinin have not yet been found in malaria patients, the need for new antimalarial agents remains. The burden of malaria is heaviest in Africa where over a milli...
متن کاملSyntheses of mycobactin analogs as potent and selective inhibitors of Mycobacterium tuberculosis.
Three analogs of mycobactin T, the siderophore secreted by Mycobacterium tuberculosis (Mtb) were synthesized and screened for their antibiotic activity against Mtb H(37)Rv and a broad panel of Gram-positive and Gram-negative bacteria. The synthetic mycobactins were potent (MIC(90) 0.02-0.88 μM in 7H12 media) and selective Mtb inhibitors, with no inhibitory activity observed against any other of...
متن کاملساخت آنالوگهای جدید 4- فلوروآمودیاکین و بررسی اثرات ضد مالاریایی دارو علیه سویههای حساس و مقاوم به کلروکین پلاسمودیوم فالسیپاروم
Background and Objective: Resistance to chloroquine (CQ) in Plasmodium falciparum malaria has become a major health concern in the developing countries. This problem has prompted investigators for finding alternative antimalarials that may be effective against resistant strains. Amodiaquine (AQ) is an antimalarial which is effective against many chloroquine-resistant strains of P. falciparum. H...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 133 7 شماره
صفحات -
تاریخ انتشار 2011